Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 8069, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057316

RESUMO

CAR (CARSKNKDC) is a wound-homing peptide that recognises angiogenic neovessels. Here we discover that systemically administered CAR peptide has inherent ability to promote wound healing: wounds close and re-epithelialise faster in CAR-treated male mice. CAR promotes keratinocyte migration in vitro. The heparan sulfate proteoglycan syndecan-4 regulates cell migration and is crucial for wound healing. We report that syndecan-4 expression is restricted to epidermis and blood vessels in mice skin wounds. Syndecan-4 regulates binding and internalisation of CAR peptide and CAR-mediated cytoskeletal remodelling. CAR induces syndecan-4-dependent activation of the small GTPase ARF6, via the guanine nucleotide exchange factor cytohesin-2, and promotes syndecan-4-, ARF6- and Cytohesin-2-mediated keratinocyte migration. Finally, we show that genetic ablation of syndecan-4 in male mice eliminates CAR-induced wound re-epithelialisation following systemic administration. We propose that CAR peptide activates syndecan-4 functions to selectively promote re-epithelialisation. Thus, CAR peptide provides a therapeutic approach to enhance wound healing in mice; systemic, yet target organ- and cell-specific.


Assuntos
Sindecana-4 , Cicatrização , Masculino , Camundongos , Animais , Sindecana-4/genética , Sindecana-4/metabolismo , Cicatrização/fisiologia , Peptídeos/metabolismo , Epiderme/metabolismo , Células Epidérmicas/metabolismo , Movimento Celular
3.
Exp Dermatol ; 28(2): 202-206, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30489650

RESUMO

Wounds close by keratinocytes migrating from the edge of the wound and re-epithelializing the epidermis. It has been proposed that the major stimuli for wound closure are blood-derived growth factors, chemokines and cytokines. The small GTPase R-Ras, a known integrin activator, also regulates vascular permeability during angiogenesis, and blood vessels lacking R-Ras leak plasma proteins constantly. We explored whether the access to blood-derived proteins influences skin wound healing in R-Ras knockout (KO) mice. In skin wounds, R-Ras expression was mostly restricted to the vasculature in the granulation tissue. Angiogenic blood vessels in the R-Ras KO mice were significantly more permeable than in wild-type (WT) controls. Although the distances between epidermal tongues, and the panniculus carnosus muscles, were significantly longer in R-Ras KO than WT controls before the granulation tissue formation took place, there were no differences in the wound closure or re-epithelialization rates or granulation tissue formation. These findings were also corroborated in a special splint excision wound model. Our study shows that although R-Ras does not influence the skin wound healing itself, the blood vessels lacking R-Ras are leaky and thus could facilitate the access of blood-derived proteins to the wound.


Assuntos
Permeabilidade Capilar , Integrinas/metabolismo , Queratinócitos/metabolismo , Cicatrização , Proteínas ras/metabolismo , Animais , Movimento Celular , Epiderme/metabolismo , Feminino , Guanosina Trifosfato/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcirculação , Neovascularização Patológica , Reepitelização , Pele/metabolismo , Dermatopatias/metabolismo , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...